TPH-A 500 N·m to 50 kN·m •Noncontact design No bearing •High frequency response Highly Rigid Torque Transducer

Noncontact design to shaft High frequency response High accuracy

- •High torsional stiffness.
- Noncontact design without slip rings or bearing enables easy maintenance and accurate measurement in high speed.
- •No interference to signal transmission and few noises by rotary transformer power supply method and optical signal transmission method.
- Diaphragm-type flexible coupling provided standard.
- Built-in amplifier gives voltage (±10 V), current (12 ± 8 mA) output.
- Tachometer output (Open collector output) enables measurement on a digital revolution counter (1 pulse/revolution).

TPH-A torque transducers allow torque to be measured up to 10000 rpm. The main feature of these transducers is high rigidity and an equipped flexible coupling. The unique design with no contact parts such as slip rings, ensures safe use even for long-term measurement of an object rotating at high speeds.

In addition, a built-in amplifier outputs voltage and current signals simultaneously and directly to recorder or indicator and A/D converter helps data acquisition by personal computer.

TPH-A torque transducers allow torque and rotating speed to be measured synchronously.

Specifications

Performance	
Rated Capacity	See table below.
Nonlinearity	Within ±0.2% RO
	(1TMA or more: Within ±0.5% RO)
Hysteresis	Within ±0.2% RO
	(1TMA or more: Within ±0.5% RO)
Repeatability	0.1% RO or less
	(1TMA or more: 0.5% RO or less)
Rated Output	10 V $\pm 0.2\%$ (Load resistance 10 k Ω or more)
	(1TMA or more: 10 V ±0.5%)
	8 mA ±1.25% (Load resistance 500 Ω or less)
	(1TMA or more: 8 mA ±1.25%)
	[Minus rated capacity (4 mA) to zero (12 mA) to plus
	rated capacity (20 mA)]

Environmental Characteristics

Safe Temperature	-10 to 60°C (Non-condensing)
Compensated Temperature	-10 to 60°C (Non-condensing)
Temperature Effect on Zero	Within ±0.03% RO/°C
Temperature Effect on Output	Within ±0.03%/°C

Electrical Characteristics

Cutoff Frequencies of AMP	1 kHz
	(Amplitude ratio at cutoff point -3 ± 2 dB)
SN Ratio	50 dB p-p or more (Noise 60 mV _{p-p} or less)
Power Supply	100 to 240 V AC

Mechanical Properties

Safe Overloads	150%							
	(1TMA or larger: 120%)							
	Output is saturated at approx. 110% the rated capacity							
Max. Speed		See table below.						
Resonance Frequencies		See table below.						
Torsion Spring Constant		See table below.						
Spring Constant in Axial Direction		See table below.						
Moment of Iner	tia	See table below.						
Weight		See table below.						

Standard Accessories Power cable (2 m)

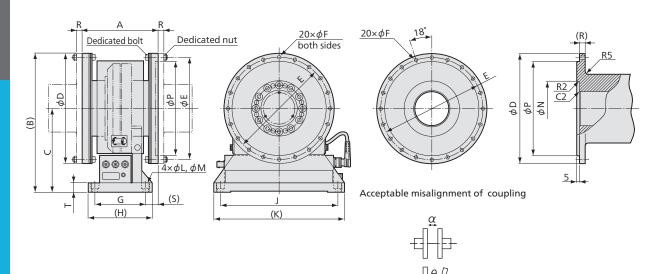
Dedicated bolts and nuts (42 sets including 2 spare sets) (Note) Flange is not included. Prepare it separately.

To Ensure Safe Usage

TPH-A series torque transducers are not cased, and thus, the rotating part and couplings are exposed. Considering fatigue failures of these parts, the user should consider installation of a safety steel cover, etc.

Specially designed diaphragm couplings are incorporated into all transducers.

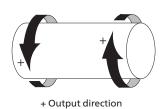
Permissible misalignment of the standard diaphragm coupling in the torque converter is 1/4 degree for the angular displacement and 0.5mm for compression and expansion. When these limits are exceeded, there is a possibility of damage.


For other general safety precautions, see page 2-137.

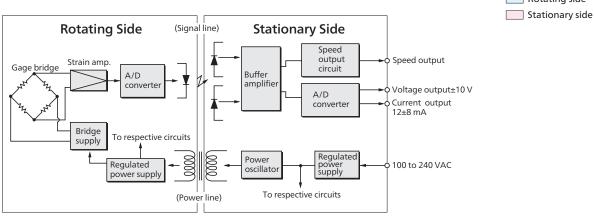
Models	Rated Capacity	Resonance Frequencies	Max. Speed (rpm)	Torsion Spring Constant*	Improvement Ratio (Times)	Spring Constant in Axial Direction (N/mm)	Moments of Inertia (kg.m ²)	Weight	
TPH-50KMA	±500 N·m	≈ 1.0 kHz		6.37×10 ⁵ N⋅m/rad	21.0	3.1×10 ³	≈ 0.032	≈ 10.7 kg	
TPH-100KMA	±1 kN·m	≈ 1.0 kHz	10000	1.67×10 ⁶ N⋅m/rad	20.5	3.2×10 ³	≈ 0.070	≈ 15.9 kg	
TPH-200KMA	±2 kN·m	≈ 1.4 kHz	10000	3.04×10 ⁶ N⋅m/rad	18.2	5.2X10	≈ 0.070	≈ 15.9 Kg	
TPH-500KMA	±5 kN·m	≈ 1.5 kHz		2.25×10 ⁶ N⋅m/rad	6.4	2.6×10 ³	≈ 0.120	≈ 18.4 kg	
TPH-1TMA	±10 kN·m	≈ 1.6 kHz	5000	7.35×10 ⁶ N⋅m/rad	10.6	2.1×10 ³	≈ 0.650	≈ 40 kg	
TPH-2TMA	±20 kN·m	≈ 1.7 kHz		1.47×10 ⁷ N·m/rad	12.5	2.5×10 ³	≈ 0.810	≈ 53 kg	
TPH-4TMA	±40 kN·m	≈ 2.3 kHz	3000	2.94×10 ⁷ N·m/rad		2.0×10 ³	≈ 1.580	≈ 83 kg	
TPH-5TMA	±50 kN·m	≈ 2.4 kHz]	4.90×107 N·m/rad		2.0×10 ³	≈ 1.700	≈ 100 kg	

*The stated torsion spring constants of earlier Kyowa's models are with the TPH-A only and excluding the coupling.

RANSDUCERS


Dimensions

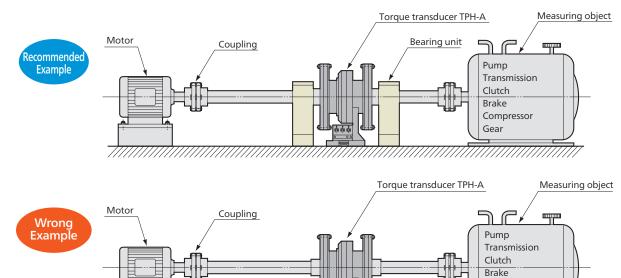
Models	A	(B)	C	φD	E	φF	G	(H)	J	(K)	φL	φM	φN	φP	R	(S)	Т				
TPH-50KMA	134	241.5	145.5	192	178	6	90	112	208	230	9	14 d=10	96	163	10	22					
TPH-100KMA	146 27	140	140	140	140	272	160	224	207	c	90	112	208	230	a	14 d=10	120	191	10	28	10
TPH-200KMA		272	160	224	207	6	90	112	208	250	9	14 d=10	120	191	10	20	16				
TPH-500KMA	150	281	160	242	220	10	90	112	208	230	9	14 d=10	125	201	12	30					
TPH-1TMA	200	362	197	330	308	10	90	112	208	230	10	15 d=10	188	283	12	65.3					
TPH-2TMA	200	405	220	370	348	13	120	150	310	340	11	18 d=12	222	325	16	42.3	25				
TPH-4TMA	200	470	250	440	408	16	150	180	372	400	13	19 d=12	260	376	20	24.3	25				
TPH-5TMA	260	470	250	440	408	16	150	180	372	400	13	19 d=12	260	376	20	54.3					


Power and signal transmission in TPH series

Using a strain gage, TPH-A torque transducers detect torsion corresponding to torque and convert it to voltage. After amplified, the voltage is digitized and then transferred as an optical signal to the stationary side via light-emitting diode. The transferred digital signal is converted to an analog signal for torque measurement. The rotating speed is optically transferred, too enabling simultaneous measurement of torque and rotating speed. The rotating side is powered through the rotary transformer.

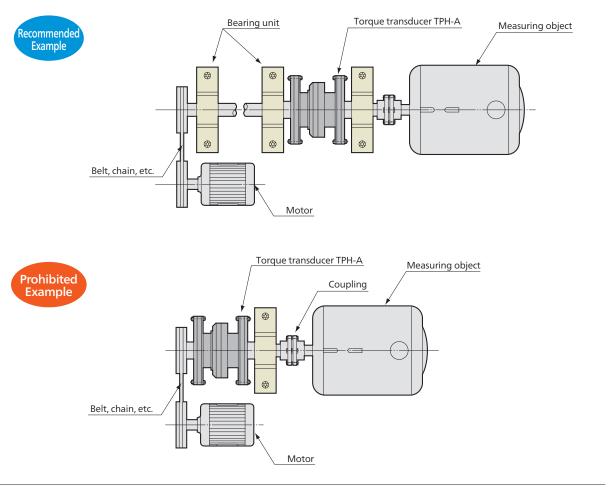
Rotaring side

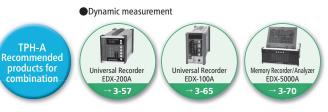
Rotary transformer



145

Compressor Gear


-146


1. Application where the distance between motor and measuring object is long and the rotation speed is high • It is recommended to install a bearing unit.

2. If connected using belt or chain, etc.

• It is recommended to install bearing units.

Torque Transducers